Parametrization of Extended Gaussian Disorder Models from Microscopic Charge Transport Simulations.

نویسندگان

  • Pascal Kordt
  • Ole Stenzel
  • Björn Baumeier
  • Volker Schmidt
  • Denis Andrienko
چکیده

Simulations of organic semiconducting devices using drift-diffusion equations are vital for the understanding of their functionality as well as for the optimization of their performance. Input parameters for these equations are usually determined from experiments and do not provide a direct link to the chemical structures and material morphology. Here we demonstrate how such a parametrization can be performed by using atomic-scale (microscopic) simulations. To do this, a stochastic network model, parametrized on atomistic simulations, is used to tabulate charge mobility in a wide density range. After accounting for finite-size effects at small charge densities, the data is fitted to the uncorrelated and correlated extended Gaussian disorder models. Surprisingly, the uncorrelated model reproduces the results of microscopic simulations better than the correlated one, compensating for spatial correlations present in a microscopic system by a large lattice constant. The proposed method retains the link to the material morphology and the underlying chemistry and can be used to formulate structure-property relationships or optimize devices prior to compound synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic modeling of molecular charge transport networks

We develop a stochastic network model for charge transport simulations in amorphous organic semiconductors, which generalizes the correlated Gaussian disorder model to realistic morphologies, charge transfer rates, and site energies. The network model includes an iterative dominancecompetition model for positioning vertices (hopping sites) in space, distance-dependent distributions for the vert...

متن کامل

Modeling of Nanofiltration for ‎Concentrated Electrolyte Solutions using ‎Linearized Transport Pore Model

   In this study, linearized transport pore model (LTPM) is applied for modeling nanofiltration (NF) membrane separation process. This modeling approach is based on the modified extended Nernst-Planck equation enhanced by Debye-Huckel theory to take into account the variations of activity coefficient especially at high salt concentrations. Rejection of single-salt (NaCl) electrolyte is inve...

متن کامل

Spatial Latent Gaussian Models: Application to House Prices Data in Tehran City

Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...

متن کامل

Parametrization and penalties in spline models with an application to survival analysis

In this paper we show how a simple parametrization, built from the definition of cubic splines, can aid in the implementation and interpretation of penalized spline models, whatever configuration of knots we choose to use. We call this parametrization value-first derivative parametrization. We perform Bayesian inference by exploring the natural link between quadratic penalties and Gaussian prio...

متن کامل

Thermoelectricity in Disordered Organic Semiconductors under the Premise of the Gaussian Disorder Model and Its Variants.

Using Monte Carlo simulations, we investigate the thermoelectric properties of disordered organic semiconductors under the premise of the Gaussian disorder model and its variants. In doing so, we provide much needed additional dimensions for comparison between these theoretical frameworks and real systems beyond those based on extensively studied charge-transport properties and aim to provide a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 10 6  شماره 

صفحات  -

تاریخ انتشار 2014